Introduction
Graduate Aptitude Test in Engineering (GATE) is an examination conducted jointly by the Indian Institute of Science (IISc), Bangalore and the seven Indian Institutes of Technology (at Bombay, Delhi, Guwahati, Kanpur, Kharagpur,Madras and Roorkee) on behalf of the National Coordination Board (NCB)-GATE, Department of Higher Education, Ministry of Human Resource Development (MHRD), Government of India. Qualifying in GATE is a mandatory requirement for seeking admission and/or financial assistance to: (i) Master’s programs and direct Doctoral programs in Engineering/Technology/Architecture and (ii) Doctoral programs in relevant branches of Science, in the institutions supported by the MHRD and other Government agencies. Even in some colleges and institutions, which admit students without MHRD scholarship/assistantship, the GATE qualification is mandatory. Further, many Public Sector Undertakings (PSUs) have been using the GATE score in their recruitment process.
About GATE
Graduate Aptitude Test in Engineering (GATE) is basically an examination on the comprehensive understanding of the candidates in various undergraduate subjects in Engineering/Technology/Architecture and post-graduate level subjects in Science. GATE will be conducted for 23 subjects (also referred to as “papers”) and it would be conducted on February every year. The GATE examination centres are spread in different cities across India, as well as, at six cities abroad. It would purely be a Computer Based Test (CBT).
The GATE score would reflect the relative performance level of the candidate in aparticular subject, which is quantified based on the several years of examination data. Note that the GATE score is valid for THREE YEARS from the date of announcement of the results.
Eligibility Criteriya For GATE 2018 ( No Age Limit )
Qualifying Degree | Qualifying Degree / Examination | Description of Eligible Candidates | Year of Qualification not later than |
B.E./B.Tech./ B.Pharm. | Bachelor’s degree holders in Engineering/ Technology (4 years after 10+2 or 3 years after B.Sc./ Diploma in Engineering/ Technology) | Currently in the final year or already completed | 2018 |
B. Arch. | Bachelor’s degree holders of Architecture (5 years course) | Currently in the final year or already completed | 2018 |
B.Sc. (Research)/ B.S. | Bachelor’s degree in Science (Post-Diploma/ 4 years after 10+2) | Currently in the 4^{th} year or already completed | 2018 |
M. Sc./ M.A./MCA or equivalent | Master’s degree in any branch of Science/ Mathematics/ Statistics/ Computer Applications or equivalent | Currently in the final year or already completed | 2018 |
Int. M.E./ M.Tech. (Post-B.Sc.) | Post-BSc Integrated Master’s degree programs in Engineering/ Technology (4 years program) | Currently in the 2^{nd}/ 3^{rd}/4^{th} year or already completed | 2020 |
Int. M.E./ M.Tech. or Dual Degree(after Diploma or 10+2) | Integrated Master’s degree program or Dual Degree program in Engineering/ Technology (5 years program) | Currently in the 4^{th}/5^{th} year or already completed | 2019 |
Int. M.Sc./ Int. B.S.-M.S. | Integrated M.Sc. or 5 years integrated B.S.-M.S. program | Currently in the final year or already completed | 2018 |
Professional Society Examinations (equivalent to B.E./ B.Tech./ B.Arch.) | B.E./ B.Tech./ B.Arch. equivalent examinations of Professional Societies, recognized by MHRD/ UPSC/ AICTE (e.g., AMIE by Institution of Engineers-India, AMICE by the Institute of Civil Engineers-India) | Completed Section A or equivalent of such professional courses | NA |
Eligibility Criteria for GATE 2018 (No age limit)
Candidates who have obtained/are pursuing their qualifying degree from countries other than India: i) must have completed or are in the final year of their Bachelor’s degree (duration: at least 4 years) in Engineering/Technology or; ii) must have completed or are in the final year of their Post Graduate (Master’s) degree (duration: at least 2 years) in any relevant subjects in science. |
Note: If a candidate is pursuing any higher degree or has already obtained a degree higher than that mentioned in the above table, the candidate should select the minimum required qualifying degree while filling the application form. |
Gate Exam Pattern
In all GATE papers, there are total 65 questions carrying 100 marks. The duration of GATE exam is 3 hours. The question paper consist of both multiple choice questions (MCQ) and numerical answer type questions.
The Engineering Mathematics section carries around 15% of the total marks, the General Aptitude section carries 15% of the total marks and the remaining 70% of the total marks is devoted to the subject of the paper.
Syllabus
CE
Civil Engineering
Section 1: Engineering Mathematics
Linear Algebra: Matrix algebra; Systems of linear equations; Eigen values and Eigen vectors.
Calculus: Functions of single variable; Limit, continuity and differentiability; Mean value theorems, local maxima and minima, Taylor and Maclaurin series; Evaluation of definite and indefinite integrals, application of definite integral to obtain area and volume; Partial derivatives; Total derivative; Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.
Ordinary Differential Equation (ODE): First order (linear and non-linear) equations; higher order linear equations with constant coefficients; Euler-Cauchy equations; Laplace transform and its application in solving linear ODEs; initial
and boundary value problems.
Partial Differential Equation (PDE): Fourier series; separation of variables; solutions of one-dimensional diffusion equation; first and second order one-dimensional wave equation and two-dimensional Laplace equation.
Probability and Statistics: Definitions of probability and sampling theorems; Conditional probability;
Discrete Random variables: Poisson and Binomial distributions;
Continuous random variables: normal and exponential distributions; Descriptive statistics -Mean, median, mode and standard deviation; Hypothesis testing.
Numerical Methods: Accuracy and precision; error analysis. Numerical solutions of linear and non-linear algebraic equations; Least square approximation, Newton’s and Lagrange polynomials, numerical differentiation, Integration by trapezoidal and Simpson’s rule, single and multi-step methods for first order differential equations.
Section 2: Structural Engineering
Engineering Mechanics: System of forces, free-body diagrams, equilibrium equations; Internal forces in structures; Friction and its applications; Kinematics of point mass and rigid body; Centre of mass; Euler’s equations of motion; Impulse-momentum; Energy methods; Principles of virtual work.
Solid Mechanics: Bending moment and shear force in statically determinate beams; Simple stress and strain relationships; Theories of failures; Simple bending theory, flexural and shear stresses, shear centre; Uniform torsion, buckling of column, combined and direct bending stresses.
Structural Analysis: Statically determinate and indeterminate structures by force/ energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames; Displacement methods: Slope deflection and moment distribution methods; Influence lines; Stiffness and flexibility methods of structural analysis.
Construction Materials and Management: Construction Materials: Structural steel -composition, material properties and behaviour; Concrete -constituents, mix design, short-term and long-term properties; Bricks and mortar; Timber; Bitumen. Construction Management: Types of construction projects; Tendering and construction contracts; Rate analysis and standard specifications; Cost estimation; Project planning and network analysis – PERT and CPM.
Concrete Structures: Working stress, Limit state and Ultimate load design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete; Analysis of beam sections at transfer and service loads.
Steel Structures: Working stress and Limit state design concepts; Design of tension and compression members, beams and beam- columns, column bases; Connections -simple and eccentric, beam-column connections, plate girders and trusses; Plastic analysis of beams and frames.
Section 3: Geotechnical Engineering
Soil Mechanics: Origin of soils, soil structure and fabric; Three-phase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability – one dimensional flow, Darcy’s law; Seepage through soils – two-dimensional flow, flow nets, uplift pressure, piping; Principle of effective stress, capillarity, seepage force and quicksand condition; Compaction in laboratory and field conditions; One-dimensional consolidation, time rate of consolidation; Mohr’s circle, stress paths, effective and total shear strength parameters, characteristics of clays and sand.
Foundation Engineering: Sub-surface investigations -scope, drilling bore holes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories -Rankine and Coulomb; Stability of slopes -finite and infinite slopes, method of slices and Bishop’s method; Stress distribution in soils -Boussinesq’s and Westergaard’s theories, pressure bulbs; Shallow foundations -Terzaghi’s and Meyerhoff’s bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations -types of piles, dynamic and static formulae, load capacity of piles in sands and clays, pile load test, negative skin friction.
Section 4: Water Resources Engineering
Fluid Mechanics: Properties of fluids, fluid statics; Continuity, momentum, energy and corresponding equations; Potential flow, applications of momentum and energy equations; Laminar and turbulent flow; Flow in pipes, pipe networks; Concept of boundary layer and its growth.
Hydraulics: Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Kinematics of flow, velocity triangles; Basics of hydraulic machines, specific speed of pumps and turbines; Channel Hydraulics – Energy-depth relationships, specific energy, critical flow, slope profile, hydraulic jump, uniform flow and gradually varied flow
Hydrology: Hydrologic cycle, precipitation, evaporation, evapo-transpiration, watershed, infiltration, unit hydrographs, hydrograph analysis, flood estimation and routing, reservoir capacity, reservoir and channel routing, surface run-off models, ground water hydrology -steady state well hydraulics and aquifers; Application of Darcy’s law.
Irrigation: Duty, delta, estimation of evapo-transpiration; Crop water requirements; Design of lined and unlined canals, head works, gravity dams and spillways; Design of weirs on permeable foundation; Types of irrigation systems, irrigation methods; Water logging and drainage; Canal regulatory works, cross-drainage structures, outlets and escapes.
Section 5: Environmental Engineering
Water and Waste Water: Quality standards, basic unit processes and operations for water treatment. Drinking water standards, water requirements, basic unit operations and unit processes for surface water treatment, distribution of water. Sewage and sewerage treatment, quantity and characteristics of wastewater. Primary, secondary and tertiary
treatment of wastewater, effluent discharge standards. Domestic wastewater treatment, quantity of characteristics of domestic wastewater, primary and secondary treatment. Unit operations and unit processes of domestic wastewater, sludge disposal.
Air Pollution: Types of pollutants, their sources and impacts, air pollution meteorology, air pollution control, air quality standards and limits.
Municipal Solid Wastes: Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal).
Noise Pollution: Impacts of noise, permissible limits of noise pollution, measurement of noise and control of noise pollution.
Section 6: Transportation Engineering
Transportation Infrastructure: Highway alignment and engineering surveys; Geometric design of highways -cross-sectional elements, sight distances, horizontal and vertical alignments; Geometric design of railway track; Airport runway length, taxiway and exit taxiway design.
Highway Pavements: Highway materials -desirable properties and quality control tests; Design of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible pavement using IRC: 37-2012; Design of rigid pavements using IRC: 58-2011; Distresses in concrete pavements.
Traffic Engineering: Traffic studies on flow, speed, travel time -delay and O-D study, PCU, peak hour factor, parking study, accident study and analysis, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow, fundamental relationships; Control devices, signal design by Webster’s method; Types of intersections
and channelization; Highway capacity and level of service of rural highways and urban roads.
Section 7: Geomatics Engineering
Principles of surveying; Errors and their adjustment; Maps – scale, coordinate system; Distance and angle measurement – Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves. Photogrammetry – scale, flying height; Remote sensing -basics, platform and sensors, visual image interpretation; Basics of Geographical information system (GIS) and Geographical Positioning system (GPS).
List Of Indian Institute Of Technology
- Indian Institute of technology(IIT) – Roorkee
- Indian Institute of technology(IIT) – Kharagpur
- Indian Institute of technology(IIT) – Kanpur
- Indian Institute of technology(IIT) – Delhi
- Indian Institute of technology(IIT) – Chennai
- Indian Institute of technology(IIT) – Mumbai
- Indian Institute of technology(IIT) – Guwahati
- Indian Institute of technology(IIT) – Bhubaneshwar
- Indian Institute of technology(IIT) – Gandhinagar
- Indian Institute of technology(IIT) – Patna
- Indian Institute of technology(IIT) – Varanasi
- Indian Institute of technology(IIT) – Ropar
- Indian Institute of technology(IIT) – Hyderabad
- Indian Institute of technology(IIT) – Jodhpur
- Indian Institute of technology(IIT) – Indore
- Indian Institute of technology(IIT) – Mandi
- Indian Institute of technology(IIT) – Palakkad
- Indian Institute of technology(IIT) – Tirupati
- Indian Institute of technology(IIT) – Dhanbad
- Indian Institute of technology(IIT) – Bhilai
- Indian Institute of technology(IIT) – Goa
- Indian Institute of technology(IIT) – Dharwad
- Indian Institute of technology(IIT) – Jammu
List of National Institutes of Technology In INDIA
- National Institute of Technology, Agartala
- Motilal Nehru National Institute of Technology, Allahabad
- Maulana Azad National Institute of Technology, Bhopal
- National Institute of Technology, Calicut
- National Institute of Technology, Durgapur
- National Institute of Technology, Hamirpur
- Malaviya National Institute of Technology, Jaipur
- Dr. B. R. Ambedkar National Institute of Technology, Jalandhar
- National Institute of Technology, Jamshedpur
- National Institute of Technology, Kurukshetra
- Visvesvaraya National Institute of Technology, Nagpur
- National Institute of Technology, Patna
- National Institute of Technology, Raipur
- National Institute of Technology, Rourkela
- National Institute of Technology, Silchar
- National Institute of Technology, Srinagar
- S V National Institute of Technology, Surat
- National Institute of Technology Karnataka, Surathkal
- National Institute of Technology, Trichy
- National Institute of Technology, Tadepalligudem
- National Institute of Technology, Warangal
- National Institute of Technology, Arunachal Pradesh (Yupia)
- National Institute of Technology Sikkim
- National Institute of Technology, Goa
- National Institute of Technology, Meghalaya
- National Institute of Technology, Nagaland
- National Institute of Technology, Manipur
- National Institute of Technology Mizoram
- National Institute of Technology, Uttarakhand
- National Institute of Technology, Delhi